Instructions:  The following programming problem can be solved by a program that uses three basic tasks-Input Data, Process Data, and Output Results. To process the data, it uses loops, arrays, decisions, accumulating, counting, searching and sorting techniques. Use RAPTOR to design a suitable program to solve this problem.

Problem Statement
[bookmark: _GoBack]
Assume the Scores array is parallel to the Players array (both arrays are below).
Scores array
Scores[0] = 198
Scores[1] = 486
Scores[2] = 651
Scores[3] = 185
Scores[4] = 216
Scores[5] = 912
Scores[6] = 173
Scores[7] = 319
Scores[8] = 846
Scores[9] = 989
Players Array
Players[0] = "Joe"
Players[1] = "Ann"
Players[2] = "Marty"
Players[3] = "Tim"
Players[4] = "Rosy"
Players[5] = "Jane"
Players[6] = "Bob"
Players[7] = "Lily"
Players[8] = "Granny"
Players[9] = "Liz"
Write a looping program that presents the user with 3 options:
1) Sort Output by Players
2) Sort Output by Scores
3) Exit Program
When the first option is selected, sort the Players array in alphabetical order, keeping the Scores array parallel. Add code that determines the highest and lowest scores in the list. Include code to display each player’s score and name in the sorted order. Below the sorted list display the highest and lowest scores in the list and the name of the player who received that score. Your sort by Player output display should look like this:
Scores Sorted by Player:
486     Ann
173     Bob
846     Granny
912     Jane
198     Joe
319     Lily
989     Liz
651     Marty
216     Rosy
185     Tim
-----------------------------------
989     Highest Score by Liz
173     Lowest Score by Bob
When the second option is selected, sort the Scores array in numerical order, keeping the Players array parallel. Add code that determines the average score of the entire list. Include code to display each player’s score and name in the sorted order. Below the sorted list display the average of all scores in the list. Your sort by Scores output display should look like this:
Players Sorted by Scores:
173     Bob
185     Tim
198     Joe
216     Rosy
319     Lily
486     Ann
651     Marty
846     Granny
912     Jane
989     Liz
---------------------------
498     Average Score 
You may use either the Bubble Sort or the Selection Sort algorithms.
You MUST use Modular Programming techniques by using Sub Modules (Sub Charts in RAPTOR) in your program. Your "main" module should not be very large.


You may NOT "hard code" the numbers for highest, lowest and average scores. These must be discovered through algorithms. If the array data is changed, these should automatically be calculated with the new data.

Other Requirements:
· Documentation: Use the "Comments" feature to document each symbol in the flowchart. You do this by right-clicking the symbol and selecting "Comment." Be sure to identify the data type of each variable used. Be sure to explain what each formula does. Be sure to explain what each of the other symbols in the flowchart does in a comment.
· Test and debug your Program: Create sample input data, run the program, then check your answers with a calculator or Excel. If something did not match up, then fix your program.
· Program must execute and produce correct output.
· Read this page again to be sure you covered all requirements.
· See the Programming Project Rubric for grading principles.
· Extra Credit: Add an option with code that allows the user to type in a Player's name and then displays the Player's score.

